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░ 1. Introduction   

Numerical methods have become a widely adopted and popular approach for approximating the solutions of 

differential equations. It is well established that many real-world problems, when formulated as initial value 

ordinary differential equations, lack analytical solutions [1, 2]. Consequently, the ongoing search for more efficient 

computational and numerical approximation methods has remained essential over the years. 

In this work, we consider the initial condition problems related to ODEs represented by the expressions:  

( )   (   ( ))           …(1) 

with initial conditions, 

 (  )        

   ( )     (   ( )   ( ))     …(2) 

with initial conditions, 

 (  )       (  )         

 ′′′( ) =  ( ,  ( ),  ′( ),  ′′( ))    …(3) 

with initial conditions, 

 (  )      
 (  )        (  )         

Several authors have suggested various numerical methods for the solutions of equations (1), (2) and (3) [3, 4, 5], 

developed a non-standard finite method for the solutions of (1) and [5] proposed the predictor-corrector method for 
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its solution. [6, 7, 8, 9] and many others have developed self-starting implicit continuous linear multistep methods 

by implementing collocation strategy alongside interpolation of various basis approximation solutions such as 

power series for the direct solution of (2). Also, authors in [10, 11, 12, 13] have equally proposed direct methods of 

approximate solutions to equations of the form (3).  

It is worthy of note that the development of a single scheme for addressing equations expressed in the structure (1), 

(2) & (3) is a recent phenomenon that has attracted attention of many researchers in the current research era.    

The uniqueness of the method proposed in this work is in its capability to solve first and higher order of IVPs ODEs 

with better efficiency and higher rate of convergence using a single scheme. An analysis of its fundamental stability 

properties indicating that the technique maintains zero-stability, ensures consistency, and achieves convergence. 

To evaluate its effectiveness, we applied it to first-, second-, and third-order IVP ODE problems. The results 

demonstrated that this new approach is not only computationally reliable but also more cost-effective compared to 

existing numerical methods.   

1.1. Study Objectives 

The following are the objectives of this study: 

1. Our goal is to create a cutting-edge simulation framework that uses an integrated block-based approach to find 

solutions for multi-degree regular differential equations, all while boosting accuracy and efficiency. 

2. We aim to implement numerical schemes that utilize block-based methods, allowing us to tackle differential 

equations of different degrees in a cohesive way by breaking the problem into manageable stages. 

3. We will thoroughly analyze the stability, consistency, and convergence of our proposed simulation method, 

applying well-established criteria from numerical analysis. 

4. We plan to compare how our integrated block-based method stacks up against traditional single-step and 

multi-step numerical techniques, focusing on accuracy, computational costs, and minimizing errors. 

5. Our objective is to assess how adaptable our method is for solving first-, second-, and higher-order regular 

differential equations, all within a single computational framework. 

6. Finally, we will showcase the real-world applicability of our simulation through benchmark problems and case 

studies drawn from various fields in science and engineering. 

░ 2. Material and Method 

Here, the approximate polynomial is chosen as 

)()(
7

0

xTaxy j

k

j

j




      …(4)  

Here, )(xTj  denotes the Chebyshev polynomial and sa j ' are unknown coefficients to be determined. Equation (4) 

undergoes interpolation evaluation at the point n
xx   while the derivatives of the first and second degree are 
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obtained by computing (determined at collocation points) at the fractional nodes
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derivative is obtained and collocated at .1,   wxx wn  Thus, we obtain the generalized expression: 
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where;  vnf   is the first derivative of (4), vng   is its second derivative and wnK  , is third derivative and where k 

denotes the step index, with k=1. sa j '  

This unknowns sa j ' ′ are determined through the application of Gaussian elimination and then inserted into Eq. (4), 

resulting in a continuous implicit formulation. 
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Hence, we show the investigation of the basic properties in the next section. 

░ 3. Assessment of the Methodology   

This section explores the core characteristics of the proposed numerical technique. The investigation includes its 

order of accuracy, error constant, zero-stability, consistency, and computational performance. Each property is 

systematically analyzed to validate the robustness of the scheme. 

3.1. Degree of Accuracy and Associated Error Coefficient 
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This formulation is classified as a multi-stage numerical approach and refers to in the form: 
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As outlined in references [9] and [11], the expression for the associated truncation inaccuracy (LTE) of Eq. (8) is 

expressed using a difference operator as follows: 
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Where f (x,y) represents a function possessing continuous derivatives throughout the closed interval  [a, b]. By 
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3.2. Zero Stability of the Method 

A linear multistep technique is considered zero-stable provided that every root of its primary characteristic 

polynomial R(ρ) lies within or on the unit circle in the complex plane. Furthermore, any root lying exactly on the 

unit circle must have a multiplicity that does not exceed the differential equation’s order [5]. 

To assess whether the developed scheme is zero-stable, we rewrite equation (8) using a vector-based notation. Let 

us denote the vector: 

 Treee 1 ,   Trddd 1 ,   Trnnm yyy  1 ,    Trnnm ffyF  1  ,
 

   Trnnm ggyG  1 , 

and matrices  )( ijaA   ,  )( ijbB  . 

Thus, Eq. (7) forms the block formula 
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Considering the initial defining equation of the hybrid block formulation approach, as defined by the 

characteristic’s equation 

)(det)( 10 ARAR       …(11) 
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Substituting 0A  and  1A  as specified in equation (11), the values of R , produces the resulting values 0 ,0,0 and1. 

As stated in [11], the block method in equation (7) exhibits zero-stability, as R(ρ)=0 meets the condition ∣Rj∣≤1 for 

j=1, and the multiplicity of roots where the magnitude of ∣Rj∣ equals 1is at most two. 

3.3. Method Consistency and Convergence Analysis 

A linear-based multi-step scheme, as defined by equation (8), is deemed consistent if it possesses a positive order 

1p . Eq. (7) has an order of 8. 

Based on the convergence theorem proved by [4], a multi-step numerical method of linear form achieves 

convergence only when it satisfies both consistency and zero-stability conditions. Since the proposed scheme 

satisfies both these properties, thus, the method satisfies the conditions for convergence. 

3.4. Numerical Experiments 

This section presents real-world implementations of the newly developed technique. A range of ordinary 

differential equations spanning IVPs involving Equations of the first, second, and third order derivatives are 

addressed to evaluate the method’s precision and effectiveness. 

Problem 1: Given the conditions  

 ( )                                                          (   ) 

Analytical Solution:  ( )               

Table 1. An evaluation of the error generated by the newly introduced block scheme in contrast with traditional 

methods for solving Problem 1 is performed 

x- values Error in new method Error in [15] Error in [3] Error in [16] 

0.1 8.30000000E-24 1.000000E-10 1.218026E-13 5.574430E-12 

0.2 1.56000000E-23 1.000000E-10 1.399991E-13 3.946177E-12 

0.3 2.23000000E-23 1.000000E-10 1.184941E-12 8.183232E-12 

0.4 2.82000000E-23 2.000000E-10 1.538991E-12 3.436118E-15 

0.5 3.35000000E-23 3.000000E-10 1.110001E-12 1.929743E-10 

0.6 3.83000000E-23 3.000000E-10 5.270229E-12 1.879040E-10 

0.7 4.25000000E-23 2.000000E-10 2.108980E-12 1.776835E-10 

0.8 4.63000000E-23 3.000000E-10 1.297895E-11 1.724676E-10 

0.9 4.95000000E-23 3.000000E-10 3.082290E-11 1.847545E-10 

1.0 5.23000000E-23 2.000000E-10 4.121925E-11 3.005770E-10 
 

Problem 2:  ( )      ( )       ( )                                                  

    ( )                       

Analytical Solution:  ( )    
 

 
    ( )  
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Table 2. A comparative analysis of the errors generated by the proposed block method and those from existing 

techniques in solving Problem 2 is presented 

x- values Error in the new method Error in [15]  Error in [8] Error in [13] 

0.1 5.221310E-020 2.000000E-010 6.370460E-13 1.65922E-10 

0.2 1.038925E-019 4.000000E-010 4.052980E-12 4.76275E-10 

0.3 1.545210E-019 2.000000E-010 1.009326E-11 6.23182E-10 

0.4 2.035925E-019 2.000000E-010 1.890366E-11 19.9134E-10 

0.5 2.506192E-019 9.000000E-010 3.033807E-11 3.28882E-10 

0.6 2.951289E-019 1.100000E-009 4.455258E-11 1.27096E-09 

0.7 3.366768E-019 1.500000E-009 5.987466E-11 4.84653E-09 

0.8 3.748489E-019 1.300000E-009 7.711903E-11 1.09585E-08 

0.9 4.092638E-019 1.500000E-009 9.618412E-11 2.01880E-08 

1.0 4.395763E-019 2.000000E-009 1.171654E-10 3.53956E-08 

 

Problem 3: Consider the initial conditions  

            ( )         ( )                          

 Analytical Solution:  ( )        

Table 3. An assessment of the discrepancy linked to the newly developed block technique in contrast with existing 

methods for solving Problem 3 is carried out 

x- values Error in the new method  Error in [2] Error in [8] Error in [17] 

0.1  4.600000E-025 2.095826E-010 2.508826E-13 2.858824E-15 

0.2 -8.600000E-026 2.092718E-009 6.493175E-11 1.439682E-12 

0.3 -5.000000E-026 7.842546E-009 1.683146E-09 5.591383E-11 

0.4 -2.500000E-025 2.009500E-008 1.700635E-08 4.796602E-09 

0.5 -3.700000E-025 4.199771E-008 1.025454E-07 1.003781E-08 

0.6  -1.300000E-025 7.728842E-008 2.558711E-06 1.590163E-08 

0.7 -6.000000E-026 1.303844E-007 5.273300E-06 2.870014E-08 

0.8  -2.500000E-025 2.064839E-007 8.275935E-06 4.284730E-08 

0.9 -3.800000E-025 3.116817E-007 1.161667E-05 5.857869E-08 

1.0  -2.000000E-025 4.531001E-007 1.542187E-05 8.449297E-08 

 

Problem 4: Given the conditions 

 ( )            ( )                                                   

                           

Analytical Solution:  ( )           
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Table 4. A review of the error behavior exhibited by the introduced block-based approach, compared with known 

methods for solving Problem 4, is performed 

x- values Error in the new method Error in [2] Error in [17] Error in [13]  

0.1 -1.83670E-020 8.881784E-015 3.369305E-12 9.24352E-10 

0.2 -3.86660E+020 3.552714E-014 2.160050E-11 8.39830E-10  

0.3 -6.11000E+020 8.304468E-014 5.333245E-11 4.23997E-10  

0.4 -8.58930E-020 1.527667E-013 9.988632E-11 3.58729E-10  

0.5 -1.13293E-019 2.460254E-013 1.598988E-10 2.99872E-10  

0.6 -1.43575E-019 3.668177E-013 2.511404E-10 3.90509E-10  

0.7 -1.77043E-019 5.178080E-013 3.961489E-10 1.47048E-09  

0.8 -2.14029E-019 7.025491E-013 5.926823E-10 2.49247E-09  

0.9 -2.54906E-019 9.254819E-013 8.429168E-10 0.15695E-09  

1.0 -3.00083E-019 1.187495E-012 1.144603E-09 3.54096E-09  

 

░ 4. Discussion of Results  

The tables provided display the computed results derived from applying the newly constructed method. Clearly, the 

proposed hybrid approach yields lower error margins than existing techniques, even with the relatively large step 

number k utilized in this study. 

░ 5. Conclusion  

This study presents the creation and execution of a novel combined block approach specifically designed for 

addressing ordinary differential equations (ODEs) of the of the first, second, and third degrees. The proposed 

approach achieves an eighth-order accuracy, reflecting both its high level of precision and its compliance with 

consistency conditions. 

One of the main advantages of this approach is its versatility it successfully handles various orders of ODEs within 

a single unified framework. The conducted simulations confirm the improved effectiveness of the proposed method 

compared to existing techniques, particularly in minimizing numerical error. As demonstrated in Tables I–IV, the 

approach delivers greater precision and improved computational performance. 

░ 6. Future Suggestions 

1. Extension to fractional-order equations: Let's expand the method to cover fractional-order and singularly 

perturbed differential equations, broadening its reach. 

2. Parallel and GPU implementation: Boost computational speed by tapping into high-performance and GPU-based 

computing resources. 

3. Adaptive block sizing: Implement adaptive step or block size control to enhance accuracy and efficiency, 

especially when dealing with varying problem conditions. 
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4. Expansion to partial differential equations (PDEs): Widen the scope to include multi-dimensional PDEs, making 

it easier to tackle complex real-world challenges. 

5. Automated error control mechanisms:  Create built-in error estimation and correction features to enhance 

numerical stability and reliability. 
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