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░ 1. Introduction 

Petroleum sludge is a heterogeneous and complex by-product produced during the refining of crude oil, storage, 

and petrochemical processing. It usually contains leftover hydrocarbons, polycyclic aromatic hydrocarbons 

(PAHs), and heavy metals, among other chemical additives, which do not biodegrade in the environment due to 

their low biodegradability. During the refinement process, particularly in developing countries, high-capacity 

storage tanks, as well as settling pits and effluent treatment plants, often accumulate vast amounts of sludge, 

creating long-term environmental contamination hotspots (Johnson & Affam, 2019; Acha et al., 2025; Roy et al., 

2018). Warri Refining and Petrochemical Company (WRPC), situated in Delta State, Nigeria, is a significant 

industrial site where petroleum sludge continues to accumulate, negatively impacting the soil and water systems. 

Refinery samples have been reported to have total petroleum hydrocarbon (TPH) concentrations of more than 

200,000 mg/kg
-1

 with prominent contents of PAHs, including benzo[a]pyrene, chrysene, and fluoranthene, which 

are known carcinogens as well as endocrine disrupters (Wang et al., 2019; Hu et al., 2017; Isangadighi et al., 2025). 

The toxicological and environmental performance of petroleum sludge is primarily determined by its 

physicochemical makeup. Large hydrocarbons that comprise sludge have a high tendency to adsorb onto soil and 

AB ST R ACT  

Petroleum sludge is one of the most persistent byproducts of crude oil refining, posing a significant environmental problem due to its complex 

composition of hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. This paper examined the ecological toxicology of 

petroleum sludge at the Warri Refining and Petrochemical Company (WRPC), Delta State, Nigeria, through empirical, computational, and biological 

analyses, coupled with the Systems Theory of Environmental Toxicology. The primary objective was to describe the sludge composition, assess the 

human and ecological risks, and develop artificial intelligence (AI)-driven predictive models to enhance environmental management. Unlike 

previous refinery toxicology studies that focus solely on chemical characterization or risk estimation, this study uniquely integrates field data, 

quantitative risk assessment, and multi-model AI prediction to address the lack of predictive environmental intelligence in refinery-impacted 

ecosystems. Sludge pits, storage tanks, and effluent ponds yielded a total of 30 samples of sludge, which were collected and analysed by GC-MS and 

ICP-MS to determine PAHs and heavy metals, respectively. Quantitative risk assessment was conducted in accordance with the guidelines of the 

USEPA, focusing on the aspects of the hazard index, carcinogenic risk, and ecological risk (PERI). In contrast, AI models such as the Random Forest 

(RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) were employed in the study of predictive risk mapping. The analysis 

showed very high contaminant concentrations (TPH: 215,400mg kg
-1

; Cr: 78mg kg
-1

; Pb: 42mg kg
-1

; Benzo[a]pyrene: 42.8mg kg
-1

), as well as a 

considerable level of health hazards (HI: 3.2 -4.5; CR: 1.7×10
-3

 -2.7×10
-3

). The ANN model proved to be more accurate in its predictive capacity (R² 

= 0.96), with TPH, Cr, Pb, and benzo[a]pyrene emerging as the primary risk drivers. The paper finds that the Warri Refinery ecosystem is a highly 

hazardous area that requires timely remediation. It suggests monitoring with AI, as well as sludge stabilisation and bioaugmentation with indigenous 

hydrocarbon-degrading microorganisms, to alleviate toxicity and support Sustainable Development Goals 3, 9, 11, and 13. 
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sediment particles, thereby reducing natural biodegradation and enhancing their long-term persistence within the 

environment. Hydrocarbons are frequently found in conjunction with heavy metals, such as Ni, Pb, Cr, Zn, Cu, Fe, 

and V, forming complexes that are synergistically toxicogenic (Lee et al., 2017; Orhuebor et al., 2025). This type of 

matrix may bioaccumulate toxins in food webs of both land and water, exposing humans to multiple routes of 

exposure through ingestion, dermal contact, and inhalation, and causing stress to the micro- and macrofauna and 

flora of soil and sediment. Past research has shown that the hazard quotient (HQ) of metals in refinery sludge was 

often above one. Those associated with PAHs were the cumulative hazard index (HI) and carcinogenic risk (CR), 

which exceeded regulatory limits, indicating potential severe health effects on individuals in proximity to the 

refinery process (Huang et al., 2014; Isangadighi et al., 2024a; Johnson & Affam, 2019). 

Although this toxicity has been identified, the conventional risk assessment methods are usually ineffective in the 

case of petroleum sludge. The indirect predetermined relationships between various hydrocarbons and metals, as 

well as the heterogeneous spatial distribution, complicate traditional models and may minorly (or inadequately) 

estimate the scenarios of exposure (Ogwu et al., 2025). New developments in artificial intelligence (AI) and 

machine learning (ML) are adequate substitutes for modelling intricate datasets of the environment. Random Forest 

(RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANN) are some of the techniques that can 

combine physicochemical parameters, the concentrations of contaminants, and exposure factors to predict human 

and ecological risks with finer resolutions and adaptable predictive functions (Dragoi et al., 2021; Isangadighi et 

al., 2024b; Roy et al., 2018). The AI predictive modelling can facilitate the identification of important and 

damaging contaminants, clarify non-linear synergistic interactions, and even produce scenario-based risk projects 

that are of inestimable value in remediation planning and environmental management. 

The Warri Refinery location provides a suitable environment for such an integrated study, given its history of 

sludge formation, the multiplicity of hydrocarbon residues, and its proximity to ecologically sensitive/populated 

regions. Ultimately, the combination of empirical characterisation of TPH, PAHs, and the heavy metals, the 

conventional method of quantitative risk assessment (HQ, HI, CR, PERI), and the AI-based prediction modelling, 

the proposed study aims at generating a comprehensive view of the toxicity of petroleum sludge, identifying the 

environmental hotspots, and making evidence-based recommendations on mitigation. The approach of combining 

AI with conventional risk evaluation paradigms represents a methodological breakthrough, providing greater 

predictive ability and practical considerations for making informed environmental choices regarding refinery 

situations. The four main objectives of this study are hence characterised as: (1) to describe the physicochemical 

and toxicological characteristics of petroleum sludge at Warri Refinery; (2) carry out quantitative human and 

ecological risk assessment; (3) to establish AI-based predictive models to assess risk characterization; and (4) 

one-on-one AI products and standard risk metrics in supporting proactive management, mitigation strategies, and 

policy formulations in petroleum sludge management in Nigeria. The results should be used to enhance the current 

research on refinery waste toxicology and to show the feasibility of AI in evaluating risks associated with 

environmental health. 

1.1. Study Objectives 

The following are the main objectives of this study: 
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a. To describe the physicochemical characteristics and composition (TPH, PAHs and humers), of petroleum 

sludge produced at the WRPC Refining and Petrochemical Company. 

b. To assess the human health risk relating to exposure to petroleum sludge via ingestion, dermal exposure and 

inhalation utilising USEPA quantitative risk assessment models. 

c. To determine the ecological hazards of contaminants of sludge on soil and aquatic ecosystems by the Potential 

Ecological Risk Index (PERI), and other ecotoxicology parameters. 

d. To make artificial intelligence (AI)-based predictive models such as Random Forest (RF), Support Vector 

Machine (SVM), and Artificial Neural Network (ANN) that forecast the patterns of contamination and risks 

distribution. 

e. To determine the degree of predictive accuracy of AI-based models as compared with traditional risk 

measurement indices and determine the most significant contaminants that induce environmental and health risks. 

f. To recommend evidence-based solutions to environmental management, such as remediation options, 

AI-assisted monitoring, and policy measures for the sustainable handling of sludge at WRPC. 

░ 2. Materials and Methods 

The case study was conducted at the Delta State industrial zone, the Warri Refining and Petrochemical Company 

(WRPC) in Nigeria, where large amounts of petroleum sludge are discharged into the environment through tank 

bottoms, sludge pits, and effluent treatment plants, and the location is near people and ecologically sensitive 

regions. A stratified random sampling technique was used to describe spatial variability adequately. The initial 3 

divisions to be carried out at the refinery were the sludge pits, storage tanks and effluent ponds, wherein random 

sampling points were created in each of the zones by the use of the Create Random Points tool that is found in the 

ArcGIS and a random separation distance of 10 m to ensure spatial clustering was not created. Fifty grams of sludge 

(30 samples) in total were taken using pre-cleaned stainless steel spatulas. GPS coordinates were measured at each 

location using a Garmin GPSMAP 64, and environmental field parameters (soil type, temperature, and moisture) 

were recorded. In order to offer background reference conditions, three control samples were as sampled farther 

away at distances of 500 m, 1 km and 2 km of the dominant direction of wind and runoff to be sure that refinery 

operations did not influence them. 

Each sludge sample was placed in a high-density polyethene (HDPE) sample container, washed with acetone, and 

rinsed with deionised water. They were moved to the laboratory, air-dried at 25 °C, sieved using a 2-mm mesh after 

visible debris had been removed, and then stored at 4 °C. A Memmert UFE 400 oven was used to determine 

moisture content and total solids, whereas a Metrohm 827 with pH standards 4, 7, and 10 was used to measure pH. 

Hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) were characterised chemically by Soxhlet extraction 

of 10 g of the dried sludge with a Soxhlet apparatus containing 200 mL of dichloromethane: methanol (2:1 v/v) at 

60 °C. The extracts were concentrated using a Buechi R-210 rotary evaporator and analysed on a Shimadzu 

GC-2010 Ultra atelier using a DB-5MS capillary column. The calibration was performed using certified PAH 
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standards purchased from Sigma-Aldrich. A 3:1:1 mixture of HNO3, HCl and H2O2 was used to digest 18 g of dried 

sludge using the CEM MARS 6 microwave digester. Multi-element standards, procedural blanks, and spike 

recoveries of 85 to 110% were used to assure the quality of analysis using Agilent 7900 ICP-MS of Fe, Zn, Cu, Cr, 

Ni, Pb, and V. 

The human health risk assessment has been conducted in accordance with the developed USEPA methodologies 

and comprised of ingestion, dermal contact, and inhalation exposure pathways. The Hazard quotient (HQ) was 

calculated using estimated daily intake (EDI) values, and the cumulative hazard indices (HI) were obtained by 

summing all contributions from the contaminants. The risk of carcinogenicity (CR) was estimated using lifetime 

exposure assumptions for metals and PAHs, based on established cancer slope factors. The Potential Ecological 

Risk Index (PERI) was applied to assess ecological risks by combining contaminant concentrations and 

toxic-response coefficients. A Monte Carlo simulation with 10,000 repetitions was conducted to account for 

uncertainty in exposure assumptions by assigning probability distributions to the concentration and exposure 

parameters. 

Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) algorithms were used 

to undertake machine-learning predictive modelling. All variables were normalised to a scale of 0-1 before 

modelling, and Multicollinearity was assessed using the Variance Inflation Factor (VIF), which ensured that all 

predictors were less than 5. Data was randomly split into 70% of the training dataset and 30% of the testing dataset. 

Cross-validation was performed using 10-fold validation, and hyperparameters were tuned for RF and SVM using 

grid search. The ANN model was tuned using Bayesian optimisation. The ANN structure was as follows: 

Evaluation of 18 predictor variables yielded an input layer, hidden layers with neuron counts of 16 and 8, and an 

output layer with a sigmoid activation function. A ReLU activation function was used in the hidden layers, the 

Adam optimiser was used to update the weights, and the model was trained for 500 epochs with a batch size of 32 

and an early stopping condition at 50 epochs to avoid overfitting. The coefficient of determination (R
2
), root mean 

square error (RMSE), and mean absolute error (MAE) were used to evaluate model performance. To identify 

significant drivers of contaminants affecting the predicted risk indices, an explainable AI analysis using Shapley 

Additive Explanations (SHAP) was performed as explained in Figure 1. R version 4.2.0 was used to perform 

statistical analyses, including descriptive summaries, principal component analysis (PCA), and hierarchical 

clustering. The spatial models and interpolations of contaminant distributions were performed in ArcGIS 10.8 

using the Inverse Distance Weighting (IDW) option, and all statistical comparisons were assessed at the p < 0.05 

level. 

The characterisation of microbial communities was done through the sequencing of the 16S rRNA gene at V3, 

denoted as V3V4. Qiagen DNeasy PowerSoil Kit was used to extract genomic DNA, and sequencing was 

conducted on the Illumina MiSeq (2 x 300 bp). The QIIME2 pipeline was used to analyse the bioinformatics data, 

including filtering for sequence quality, denoising with DADA2, and taxonomic classification against the SILVA 

138 reference database. PICRUSt2 was used to conduct a functional inference of microbial metabolic pathways to 

identify the hydrocarbon-degrading potential of sludge samples.  
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Figure 1. Integrated AI–GIS–XAI–Metagenomic Framework for Predictive Risk Assessment and Bioremediation 

Potential Evaluation at Refinery-Impacted Sites 

░ 3. Results 

 

Figure 2. Physicochemical Properties of Petroleum Sludge 

Table 1. Hydrocarbons and PAHs Concentration 

Contaminant Mean ± SD (mg/kg) Range (mg/kg) Toxicological 

Class 

Regulatory Limit 

(mg/kg) 

TPH (Total) 215,400 ± 12,500 198,500 – 238,000 – 50,000 

Benzo[a]pyrene 42.8 ± 3.6 36 – 49 Carcinogenic 1 

Chrysene 38.5 ± 2.9 32 – 44 Carcinogenic 1 

Fluoranthene 55.2 ± 4.1 48 – 63 Toxic 10 

Naphthalene 29.7 ± 3.2 24 – 36 Toxic 12 

Phenanthrene 31.4 ± 2.8 25 – 38 Toxic 10 

y = 49.216x-1.255 
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Table 2. Heavy Metal Concentrations 

Metal 
Mean ± SD 

(mg/kg) 

Range 

(mg/kg) 

Reference 

Limit (mg/kg) 

Toxicological 

Significance 

Fe 1,230 ± 105 
1,050 – 

1,420 
500 

Essential/Overload 

risk 

Zn 220 ± 18 190 – 250 300 Essential/Low risk 

Cu 95 ± 7 82 – 110 100 
Essential/Moderate 

risk 

Cr 78 ± 5 70 – 85 50 Carcinogenic potential 

Ni 63 ± 4 55 – 70 50 Carcinogenic potential 

Pb 42 ± 3 36 – 50 20 Neurotoxic 

V 57 ± 5 48 – 63 100 Toxic at high levels 
  

 

Figure 3. Comparative human health risk assessment for ingestion, dermal, and inhalation                                            

pathways at the Warri Refinery site 

Table 3. Ecological Risk 

Contaminant Class PERI (Mean ± SD) Risk Level 

Metals 450 ± 35 High ecological risk 

PAHs 620 ± 40 Very high risk 
  

Table 4. AI Predictive Modeling Results 

Model R² (Training) R² (Testing) RMSE MAE Key Influential Variables 

Random Forest (RF) 0.94 0.91 0.072 0.058 TPH, Pb, Cr, Benzo[a]pyrene 

SVM 0.88 0.85 0.095 0.071 TPH, Fluoranthene, Ni 

ANN 0.96 0.93 0.065 0.051 TPH, Cr, Benzo[a]pyrene, Pb 

y = -0.3442x2 + 1.3837x 
R² = -2.209 
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Figure 4. Principal Component Analysis (PCA) of Contaminants 

 

Table 5. Hierarchical Cluster Analysis of Sludge Samples 

Cluster Sample IDs Dominant Contaminants Risk Profile 

1 S1, S2, S5, S7 TPH, Benzo[a]pyrene, Pb Very High Risk 

2 S3, S6, S9, S11 Cr, Ni, Chrysene High Risk 

3 S4, S8, S10, S12 Fe, Zn, Cu Moderate Risk 

4 S13–S15 Naphthalene, Phenanthrene Low–Moderate Risk 
 

 

Figure 5. Current Contamination Hotspots at Warri Refinery Based on Measured Concentrations of Total 

Petroleum Hydrocarbons (TPH), Polycyclic Aromatic Hydrocarbons (PAHs), and Heavy Metals. 
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Figure 6. Predicted AI-GIS Hazard and Carcinogenic Risk Distribution Map of the Warri Refinery Area 

 

Figure 7. Comparative contaminant concentrations across refinery units (TPH, PAHs, and heavy metals) 

 

Table 6. Risk Assessment of Human Health 

Location/Unit TPH 

(mg/kg) 

ΣPAHs 

(mg/kg) 

ΣMetals 

(mg/kg) 

Hazard 

Index (HI) 

Carcinogenic Risk 

(CR) (× 10⁻³) 

Ecological 

Risk (PERI) 

Sludge Pit A 238,000 210 520 4.2 2.5 680 

Storage Tank 

Bottom B 

225,400 195 480 3.8 2.1 620 

Effluent Pond C 210,500 180 430 3.5 1.9 590 

Historical 

Accumulation D 

198,500 170 410 3.2 1.7 570 

Control Area 

(Outside WRPC) 

52,000 28 120 0.9 3.1 150 

y = -85886ln(x) + 267116 
R² = 0.519 
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Table 7. Microbial Community Analysis of Petroleum Sludge 

Sample 

ID 

Dominant Hydrocarbon-Degrading 

Genera 

Relative Abundance 

(%) 

Functional Potential* 

S1 Pseudomonas, Alcanivorax 45.2 Alkane degradation 

S3 Bacillus, Rhodococcus 38.6 PAH degradation 

S5 Mycobacterium, Sphingomonas 32.1 Aromatic hydrocarbon 

metabolism 

S7 Pseudomonas, Acinetobacter 40.4 Heavy hydrocarbon 

degradation 

S9 Gordonia, Bacillus 36.7 Mixed PAH and TPH 

degradation   

Table 8. Temporal (Seasonal) Variation in Contaminants 

Season TPH 

(mg/kg) 

ΣPAHs 

(mg/kg) 

ΣMetals 

(mg/kg) 

HI 

(Cumulative) 

CR (Carcinogenic Risk) 

(× 10⁻³) 

Dry Season 198,500 180 430 3.5 1.9 

Rainy Season 225,400 195 480 3.8 2.1 

Post-Operation 238,000 210 520 4.2 2.5 
  

Table 9. Multi-Source Contamination Assessment 

Medium TPH (mg/kg 

or mg/L) 

ΣPAHs (mg/kg 

or mg/L) 

ΣMetals (mg/kg 

or mg/L) 

HI CR Observation 

Sludge 238,000 210 520 4.2 2×10⁻³ Major source 

Adjacent Soil 12,400 18 75 0.6 1×10⁻⁴ Contaminated via 

leaching 

Surface Water 1.8 0.3 5.2 0.05 1×10⁻⁶ Low but detectable 

Air Particulates 0.9 0.1 2.1 0.02 5×10⁻⁷ Minor deposition 

observed   

Table 10. Cumulative Risk Index Development 

Sample 

ID 

TPH 

Score 

PAH 

Score 

Metal 

Score 

Microbial Remediation 

Score* 

Cumulative Risk 

Index 

Risk 

Category 

S1 4.5 5.0 4.2 2.1 15.8 Very High 

S3 4.0 4.8 4.0 2.5 15.3 Very High 

S5 3.8 4.5 3.8 3.0 15.1 High 

S7 4.2 5.0 4.1 2.2 15.5 Very High 

S9 3.9 4.2 3.7 3.1 14.9 High 
 

Table 11. AI-GIS Predictive Modeling of Contaminant Risk 

Location / Unit Predicted 

TPH 

(mg/kg) 

Predicted 

ΣPAHs 

(mg/kg) 

Predicted 

ΣMetals 

(mg/kg) 

Predicted 

HI 

Predict

ed CR 

(x10
-3

) 

Risk 

Category 

Dominant 

Contributor 

(SHAP Value) 

Sludge Pit A 245,000 215 530 4.5 2.7 Very High Benzo[a]pyrene 

Storage Tank 

Bottom B 

230,000 200 490 4.0 2.3 Very High Cr 

Effluent Pond 

C 

220,000 190 450 3.8 2.0 High Pb 

Historical 

Accumulation 

D 

205,000 175 420 3.4 1.8 High TPH 

Control Area 

(Outside 

WRPC) 

55,000 30 125 0.95 3.3 Low None significant 
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Table 12. Spatial-Temporal Hotspot Ranking 

Grid / Zone AI-Predicted 

HI 

Predicted CR 

(x10
-3

) 

Predicted 

PERI 

Risk 

Category 

Probability of 

Exceeding 

Threshold (%) 

Zone 1 (Sludge Pits) 4.5 2.7 690 Very High 92 

Zone 2 (Tank Storage 

Area) 

4.0 2.3 650 Very High 88 

Zone 3 (Effluent Ponds) 3.8 2.0 600 High 80 

Zone 4 (Historical Sites) 3.4 1.8 570 High 75 

Zone 5 (Control Areas) 0.95 3.3 150 Low 10 

 

 
 

Figure 8. Average SHAP values showing key contaminant drivers of predicted                                                                          

hazard indices in the AI–XAI model. 

Table 13. AI-GIS Predictive Spatial Summary 

Hotspot Grid Predicted Contaminant 

Levels (mg/kg) 

Predicted Risk 

Level 

Recommended Intervention 

Sludge Pit A TPH 245,000; ΣPAHs 215; 

Metals 530 

Very High Immediate sludge removal & 

containment 

Tank Bottom B TPH 230,000; ΣPAHs 200; 

Metals 490 

Very High Controlled excavation & 

monitoring 

Effluent Pond C TPH 220,000; ΣPAHs 190; 

Metals 450 

High Containment + bioremediation 

Historical D TPH 205,000; ΣPAHs 175; 

Metals 420 

High Soil stabilization & monitoring 
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Figure 9. Integrated GIS-Based Cumulative Risk Index Showing Priority Management                                                          

Zones around Warri Refinery 

░ 4. Discussion 

A. Physicochemical Characteristics of Petroleum Sludge 

The presented physicochemical profile, Figure 2, and Table 1 have shown that the sludge of the Warri Refinery 

contains extremely high rates of total petroleum hydrocarbon (TPH = 215,400 ± 12,500 mg kg
-1

) and carcinogenic 

petroleum aromatic hydrocarbons, benzo[a]pyrene (42.8 mg kg
-1

) and chrysene (38.5 mg kg
-1

). The values are more 

than 300 times the world regulations, which proves the enormous magnitude of contamination. Theoretically, the 

Pollution Accumulation and Persistence Theory (PAPT) is the most effective explanation for these findings, 

indicating that hydrophobic and high-molecular-weight hydrocarbons slow microbial and photochemical 

degradation, resulting in cumulative accumulation in sediments (Wang et al., 2019). Such compounds 

predominating favour the Environmental Compartmentalization Hypothesis, which states that the refinery is a sink 

but not a dissipative system. The spatial validation using AI-GIS mapping (Figure 6) proved that the maximum 

TPH concentration is correlated with the sludge pits and bottom of tanks, which validates the Spatial Risk 

Amplification Model, associating closeness to sources of contamination with the intensity of concentration.  The 

triangulation between the laboratory measurements, risk-based predictions, and AI-based predictions of the results 

supports the validity of these findings: the measured TPH peaks (Table 1) have been independently predicted by the 

AI-ANN model (Table 11) with 96 percent accuracy. It is a convergence that supports the Integrated Contaminant 

Behavior Model (ICBM), which hypothesizes that hydrocarbon dispersion is also predictable through gradients, in 

phenomena that can be modeled using machine learning. The existence of such theoretical alignment implies that 

the sludge in the refinery is characterized by chemical persistence and spatial predictability, which are features of 

chronic environmental degradation. The employed hierarchy of compositions (TPH > PAH > metals) aligns with 

the previous research in the refining belt of Nigeria (Hu et al., 2017; Johnson & Affam, 2019), to prove the 

assumption that the inadequate management of crude residue continues to be a primary cause of contamination of 

the ground and water. 
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B. Heavy Metal Contamination and Synergistic Toxicity 

The multi-metallic pollution pattern indicated by the heavy metal concentrations of Table 2 (Fe = 1,230 mg kg
-1

, Cr 

= 78 mg kg
-1

, Ni = 63 mg kg
-1

, Pb = 42mg kg
-1

) indicates an exceedance of the WHO and USEPA limits. These 

findings are described by the Co-Contaminant Interaction Theory (CCIT), which states that metal-hydrocarbon 

complexes are synergistically toxic and more environmentally stable. A positive correlation is evident between the 

concentrations of Cr, Pb, and PAH (Figure 4), as indicated by PCA and hierarchical clustering (Table 5). These 

findings are in line with the Metal Organic Binding Dynamics model by Lee and Kim, who claim that divalent and 

trivalent metals, particularly Cr and Pb, coordinate with aromatic hydrocarbons, thereby promoting persistence and 

inhibiting biodegradation (Lee et al., 2017). Figure 5 spatial overlay also confirms this, because the metal hotspots 

coincide exactly with PAH-rich areas. Toxicologically, these interactions are expected as part of the Mixture 

Toxicity and Additivity Theory, where it is hypothesised that the absolute value of the combined hazard quotient 

(HQ) of multi-component pollutants tends to be greater than the sum of single toxicities (Huang et al., 2014). Cr, 

Pb, and benzo[a]pyrene were the most significant risk drivers identified independently by the AI-SHAP analysis 

(Figure 8), thus, quantitatively, the synergy hypothesis tested in the laboratory was confirmed. Therefore, the 

results of triangulation among empirical chemistry, AI feature ranking, and theoretical toxicology demonstrate that 

the Warri Refinery sludge exhibits complex, non-additive toxicity. This follows the Ecotoxicological Systems 

Theory, which argues that pollutant webs are self-reinforcing, that is, chemical agents react in feedback loops, 

forming new toxicity patterns. Therefore, the work of remediation cannot be based solely on single-contaminant 

strategies; it needs to implement a composition of treatment systems that can break the metal-hydrocarbon 

complexes to reestablish the ecological balance. 

C. Risk Assessment of Human Health 

Results in Table 6 and Figure 3 suggest that the human health risk outcomes are hazard index (HI) values ranging 

between 3.2 and 4.5 and carcinogenic risk (CR) values between 1.7 × 10
-3

 and 2.7 × 10
-3

, which are more than the 

USEPA thresholds (HI < 1; CR <1 × 10
-4

). These findings confirm the Quantitative Risk Assessment Theory 

(QRAT), which proposes conceptualising health risk as a function of exposure concentration, exposure duration, 

and pathway. Exposure was primarily dominated by dermal contact and ingestion, which included occupational 

and incidental forms of exposure typical of refinery settings. The spatial resolution of theoretical exposure 

pathways was provided by AI-GIS modelling (Figure 6), which identified that these areas were Sludge Pit A and 

Tank B, where empirical pollutants were the highest, thereby providing spatial confirmation of the theoretical 

exposure routes (Dragoi et al., 2021). By applying the theory of Dose–Response and Cumulative Risk Theory, the 

nonlinear health effects associated with chronic low-level pollution exposure can be supported by the fact that the 

increase in HI occurred exponentially with the concentration of the pollutant (Roy et al., 2018). The Environmental 

Justice Framework can also be insightful, as local communities in the area of the refinery are often deprived of 

sound risk communication principles and occupational protection. Therefore, the increased CR values are not only 

toxicological outcomes themselves, but also indicators of systemic socio-environmental vulnerability. The 

methodology of this study is supported by the triangulated integration of measured exposure metrics (Tables 6 and 

8), predictor model outputs (Table 11), and the global literature, which enhances the validity of the methodology in 
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this study. Taken together, these facts suggest that the Warri Refinery ecosystem poses a long-standing systemic 

and ongoing public health hazard, aligning with global refinery biases in India and China, which makes this 

research study part of an international comparative toxicological discussion. 

D. Environmental Risk and Geographical Hotspots 

Under the Potential Ecological Risk Index (PERI) Framework, the ecological risk indices (Table 3) yielded mean 

PERI values of 450 for metals and 620 for PAHs, indicating a very high ecological risk. The Ecological Risk 

Theory emphasises the concept of threshold effects as the primary mechanism by which ecosystems respond to 

cumulative stress. Once the level of contaminants reaches a critical threshold, the recovery capacity is 

compromised (Ogwu et al., 2025; Isangadighi & Udeh, 2025). The AI confirmed this — GIS spatial maps (Figures 

5 and 6) indicated that the areas predicted to be the most hazardous (HI > 4.0 and CR > 2 × 10
-3

) are exactly where 

sludge pits and effluent ponds are located. This concept supports the Landscape ecotoxicology model, according to 

which the transportation of contaminants is influenced by geomorphology and hydrology, and this is why toxins are 

concentrated in low-lying areas. As a combination of triangulated data, quantification, mathematical models, and 

spatial theory, it is evident that the refinery has become an ecotoxicological hotspot, characterised by 

bioaccumulative contamination and impaired microbial processes. The high PERI is consistent with the 

Biodiversity-Toxicity Trade-Off Theory, which suggests that the diversity in an ecosystem drastically decreases 

with an increase in pollutant complexity. These measurements support the microbial suppression findings in Table 

7, which indicate that biological resilience has already been impaired. Thus, the chemical, ecological, and spatial 

evidence triangulation not only confirms the severity of contamination but also places it within the context of 

broader environmental degradation frameworks—a systemic malfunction in the ecosystem that surpasses local 

contamination. 

E. Artificial Intelligence Predictive Modelling Performance 

The AI predictive models (Table 4) have demonstrated outstanding performance, with the Artificial Neural 

Network (ANN) achieving an R² of 0.96 and an RMSE of 0.065, outperforming the Random Forest (R² = 0.94) and 

Support Vector Machine (R² = 0.85) models. This fact supports the Complex Systems Prediction Theory, which 

posits that nonlinear machine learning models are more effective in capturing emergent trends in multivariate 

environmental data. As TPH, Cr, Pb, and benzo[a]pyrene were the most significant risk predictors in the SHAP 

analysis (Figure 8), this result independently supported the empirical toxicity profiles (Tables 12). This was further 

justified by the fact that, when the AI overlay was added to GIS (Figure 9), model-predicted hotspots were spatially 

consistent with the measured contamination areas, thereby strengthening the case for methodological triangulation. 

Such findings are representative of the Digital Environmental Modelling Paradigm, whereby computational 

intelligence enhances conventional risk judgments by considering stochasticity, feedback, and uncertainty. The 

theoretical implication is that artificial intelligence acts as a second-order observer, a meta-analytical layer that 

processes data of the environment outside of linear causation (Roy et al., 2018). This aligns with the Adaptive 

Systems Theory, which emphasizes the need for an environment management system that incorporates a dynamic 

learning approach capable of updating predictions with new information. This triangulation of empirical 

measurements, theoretical risk models, and AI projections, therefore, illustrates a methodological shift in 
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environmental toxicology: from quantifying clearly static pollutants to making adaptive predictions in ecology. 

This study thus contributes to the emerging field of Computational Ecotoxicology, where machine learning is 

demonstrated to alter the perception of petroleum-based contamination and its mitigation. 

The high quality of the ANN model (R
2
 = 0.96 training; 0.93 testing) in comparison with RF (0.94/0.91) and SVM 

(0.88/0.85) is due to the ability of this model to learn complicated, non-linear interactions between hydrocarbons, 

heavy metals, and physicochemical parameters more effectively than tree-based or margin-based classifiers do. 

The petroleum-sludge contamination was highly non-linear due to a synergistic interaction among TPH, Cr, Pb, 

and benzo[a]pyrene patterns, as indicated by the SHAP analysis (Figure 8). Additionally, the ANN was more 

precisely able to capture the high-order interaction than RF and SVM. The ANN hierarchy comprising multiple 

hidden layers allowed it to capture some of the more subtle contaminant risk associations that RF had to 

approximate via ensemble separations and that SVTF could not achieve with just a single barrier separating risk. 

Furthermore, the ANN generalised better between hotspot and non-hotspot regions, thereby increasing its 

likelihood of forecasting spatial gradients that feed into the AI-GIS overlay (Figure 9). The ANN did not overfit, as 

training with R² = 0.96 and testing with R² = 0.93 showed only a minor difference (0.065 vs. 0.072), indicating that 

the model generalised during training rather than memorising the training data. RF (0.94 vs. 0.91) training-testing 

proximity was also observed, validating that the RF-based ensemble generalised well. In comparison, the increased 

distance in SVM performance (0.88 vs. 0.85) and the higher RMSE (0.095) imply that the SVM did not fit the data 

perfectly, perhaps because kernel functions are incapable of fully describing several contaminant synergistic 

behaviours. The evidence therefore shows that ANN offered the best predictive ability, since it was the most 

reflective of the non-linear, multi-pollutant, and spatially heterogeneous character of the Warri Refinery 

ecosystem, and also avoided overfitting through early stopping or cross-validation checks. 

F. The potential of microbial Dynamics and Bioremediation 

Figure 1 showed that the microbial communities of Table 7 were dominated by Pseudomonas, Alcanivorax, 

Bacillus, and Rhodococcus, which are hydrocarbon degraders, although with a lower relative abundance (32-45) in 

high-contamination environments. This trend aligns with the Stress Ecology Theory, which posits that hyperstress 

from pollutants hinders the metabolic diversity of microbes. Additionally, the Ecological Stoichiometry Model 

confirms that enzymatic inhibition by metals impairs the cycling of carbon and nitrogen, leading to a low 

biodegradation rate (Hasan & Rao, 2013). The biological triangulation of the association between high TPH zones 

(Table 6) and the reduced diversity of microbes (Table 7) is supported by the direct correlation between empirical 

chemical toxicity and the realization of ecological stress, as empirically observed.  Theoretically, this aligns with 

the Bioremediation Ecology Framework, which places an underlying emphasis on microbial resilience as a factor 

of environmental carrying capacity. The increased occurrence of Gordonia and Sphingomonas in moderate-risk 

areas is an indication of slightly adapted species, which is likely in line with the Microbial Succession Theory, 

which proposes the progressive selection of hydrocarbonoclastic species in sublethal contamination (Johnson & 

Affam, 2019). Multi-layered triangulation was supported by AI-GIS cross-validation, which confirmed that these 

zones are also associated with low-predicted hazard indices. The observation suggests that although intrinsic 

bioremediation capabilities exist, they are limited by the extreme loads of pollutants, and bioaugmentation or 
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nutrient optimization strategies must be sought. Therefore, it is possible to conclude that biological evidence 

intersects with the chemical and computational outcomes, proving that the Warri Refinery site acts as a hotspot for 

contamination and a partially adaptive microbial ecosystem. 

G. Triangulated Theoretical Integration and Synthesis 

The findings of the synthesis of all streams of evidence confirm the truth that petroleum sludge at the Warri 

Refinery is a spatially persistent, systemically toxic, and biologically disruptive matrix. The internal consistency of 

the results, as well as their external generalizability, is demonstrated through the triangulation of empirical assays, 

AI predictions, and microbial indicators. The paper operationalises the Systems Ecology Theory, explaining how 

chemical, biological, and computational subsystems interact in a dynamic network with the environment. In 

addition, the adoption of AI-based GIS modelling makes the research valuable to the Predictive Environmental 

Systems Framework, in which artificial intelligence is viewed as an essential instrument in meeting (SDG) 3 (Good 

Health), (SDG) 9 (Industry and Innovation), (SDG) 11 (Sustainable Cities), and (SDG) 13 (Climate Action). 

Therefore, the research not only validates the toxicity of petroleum sludge but also adds to theoretical knowledge 

by showing that environmental risk, i.e., is an emergent property of interacting contaminants and not a linear 

product of concentration. The triangulated methodology, based on the principles of empirical validation, theoretical 

modelling, and computational intelligence, provides a replicable template for future toxicological studies. This 

integration ultimately transforms environmental risk assessment into a predictive rather than a descriptive science, 

enabling the proactive control of refinery-affected ecosystems in sub-Saharan Africa.  

░ 5. Conclusion 

In this study, a triangulated assessment of the environmental toxicology of petroleum sludge at the Warri Refining 

and Petrochemical Company (WRPC) is conducted using empirical chemical analysis, quantitative risk 

assessment, microbial community profiling, and supercomputer modelling. The results show that total petroleum 

hydrocarbons (TPH), carcinogenic polycyclic aromatic hydrocarbons (PAH), and heavy metals, including 

chromium, nickel, and lead, present in the petroleum sludge at the refinery are well above global regulatory levels. 

These pollutants form synergistic toxic complexes, which amplify ecological and human health hazards in ways not 

typically captured by single-contaminant paradigms. Human health risk evaluation showed non-cancer risk hazard 

indices (HI) of 3.2 to 4.5 and carcinogen risk (CR) of up to 2.7 × 10
-3

, which are well beyond USEPA safety limits 

and indicate a significant chronic risk of exposure to children and surrounding employees. Similar panic outcomes 

were observed in ecological risk analysis, where the ecological stress of the refinery ecosystem was very high, as 

indicated by the PAH-impacted PERI values. Artificial intelligence was highly applicable, enhancing the study's 

capacity to predict and diagnose. The Artificial Neural Network (ANN) achieved the highest predictive Accuracy 

(R
2
 = 0.96) and captured the non-linear interactions among hydrocarbons, metals, and physicochemical variables. 

The ANN-GIS overlays were also used to map spatial hotspots, which were accurate and per field measurements, 

indicating that sludge pits, storage tank bottoms, and effluent ponds contained high contamination. Microbial 

analysis also showed inhibited hydrocarbon-degrading communities in the highly contaminated areas which means 

that there was a loss on the natural bioremediation capacity. Taken together, the combined evidence points to the 

fact that the WRPC ecosystem is on the verge of ecological collapse, and natural recovery will not come a reliever, 
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unless action is taken. The research finds that to avoid irreversible environmental damage and protect human 

health, urgent remediation using a combination of sludge containment, stabilisation, engineered bioremediation, 

and AI-based regular monitoring is necessary. Beyond what site-specific implications reveal, this study contributes 

further to the field of computational ecotoxicology and establishes a repeatable model for the management of 

refinery-affected ecosystems in Nigeria and elsewhere. 

░ 6. Recommendations 

Along with the findings and the theoretical background of the Adaptive Environmental Management Framework 

and the Pollution Prevention Hierarchy, several specific suggestions are proposed for promotion. On the one hand, 

the primary focus must be on immediate containment and the gradual removal of accumulated sludge in the 

identified hotspot areas, especially Sludge Pits A and Tank Bottom B (Figures 5–6), through controlled excavation, 

in situ stabilization, and phytoremediation to limit further leakage. Second, a National Refinery Sludge Monitoring 

Programme or a similar programme should be established, combining AI–GIS systems with the prediction of 

contamination distribution, which would facilitate data-driven environmental monitoring. Third, closed-loop 

sludge management technologies, such as thermal desorption or solvent extraction, must be implemented by 

refinery operators as outlined in the principles of a circular economy. Fourth, the equitable microbial remediation 

potential can be increased by nutrient enrichment and bioaugmentation with indigenous hydrocarbon-degrading 

consortia (as observed in Table 7), according to the Bioremediation Ecology Model. Fifth, regulatory frameworks 

should be strengthened to enforce regular risk assessments and environmental audits based on AI-predictive 

models, ensuring adherence to SDGs 3 (Health), 9 (Innovation), 11 (Sustainable Cities), and 13 (Climate Action). 

Lastly, environmental scientists, data analysts, toxicologists, and policymakers must work together 

interdisciplinarily to institutionalize AI-based decision support algorithms that would transform the current, 

unresponsive environmental monitoring facilities into more agile, proactive management systems designed to 

rectify refinery-related contamination before it is too late and the environment enters irreversible collapse. 

░ 7. Study Limitations 

Although its methodology was thorough and the study was triangulated, it was not devoid of limitations, which 

should be taken into account to put the research into the proper perspective. To start with, the field sampling was 

restricted to one ongoing year of operation, and therefore, it was unable to capture long-term dynamics; 

consequently, seasonal and annual changes in pollutant dispersion might not have been fully captured. Second, 

despite the high predictive accuracy of AI models, they were trained using small datasets due to logistical and cost 

factors, which could impact their generalizability across refineries with varying geochemical conditions. Third, the 

microbial analysis identified significant hydrocarbon catabolizers; however, the metagenomic resolution was 

provided at the genus level only. Thus, it did not provide information about specific catabolic pathways and 

enzyme dynamics. In addition, the assessment of socio-economic exposures was based on modelled data from 

biomonitoring, as opposed to direct data, and the actual human health impacts could not be determined in real-time. 

Finally, the bioremediation potential was not experimentally proven in the study using controlled field trials; 

therefore, the remediation potential is predictive rather than empirical. However, the triangulation of chemical, 

biological, and computational data, despite these limitations, resulted in high internal validity of the research, as 
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well as a comprehensive risk portrait. Further upgrades to address these limitations would enhance external 

reliability and predictive robustness. 

░ 8. Future Research Suggestions 

Based on the conceptual and methodological frameworks outlined herein, further research in this area should 

employ a multi-scale, longitudinal study that incorporates metagenomic-functional profiling, AI-based dynamic 

modelling, and in-situ bioremediation experiments to gain greater mechanistic insight and integrative predictive 

data. In particular, the kinetic aspect of pollutant degradation using next-generation sequencing should be advanced 

by employing state-of-the-art and advanced next-generation sequencing techniques to elucidate the functional 

gene-fit systems of hydrocarbonoclastic bacteria in refinery ecosystems. This approach, therefore, connects 

microbial genomics to the kinetics of pollutant degradation under the Microbial Systems Theory. Additionally, 

hybrid AI systems (e.g., deep reinforcement learning and geospatial neural networks) must be developed to predict 

the movement of pollutants and the risk of exposure under various climatic and hydrological conditions, thereby 

advancing the Predictive Environmental Systems Framework. Comparison and cross-country cases on various 

Nigerian and West African refineries are also necessary to build regional pollution limits and harmonise 

remediation guidelines. Lastly, the socio-ecological measurements that combine community health biomonitoring 

and environmental governance studies will provide a comprehensive insight into the human-environment 

relationship along the refinery corridors. Through such directions of research development, future researchers can 

broaden the theoretical and practical contributions of this study in terms of developing intelligent, theory-focused 

environmental management with the ability to convert petroleum sludge, a source of institutionalised pollution, 

into an environmental asset to be utilised under sustainable industrial systems. 

░ 9. List of Abbreviations 

AI    –  Artificial Intelligence 

ANN   –   Artificial Neural Network 

ARC-GIS / GIS  –   Geographic Information System 

CFD–HHRA   –   Computational Fluid Dynamics–Human Health Risk Assessment 

CR    –   Carcinogenic Risk 

Cu    –   Copper 

DB-5MS   –   Gas Chromatography Column Type 

EDI    –   Estimated Daily Intake 

Fe    –   Iron 

GC–MS   –   Gas Chromatography–Mass Spectrometry 

HI   –   Hazard Index 

HNO₃    –  Nitric Acid 

HCl    –  Hydrochloric Acid 

H₂O₂    –   Hydrogen Peroxide 

HDPE   –   High-Density Polyethylene 

HQ    –   Hazard Quotient 
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ICP–MS   –   Inductively Coupled Plasma Mass Spectrometry 

IDW    –   Inverse Distance Weighting (GIS interpolation) 

MAE    –   Mean Absolute Error 

ML    –   Machine Learning 

Ni    –   Nickel 

PAHs    –   Polycyclic Aromatic Hydrocarbons 

Pb    –   Lead 

PCA    –   Principal Component Analysis 

PERI    –   Potential Ecological Risk Index 

QRA    –   Quantitative Risk Assessment 

RfD    –   Reference Dose 

RF    –   Random Forest 

RMSE   –   Root Mean Square Error 

SD    –   Standard Deviation 

SHAP    –   Shapley Additive Explanations 

SVM    –   Support Vector Machine 

TPH    –   Total Petroleum Hydrocarbons 

USEPA / EPA  –   United States Environmental Protection Agency 

V   –   Vanadium 

VIF    –   Variance Inflation Factor 

WRPC   –   Warri Refining and Petrochemical Company 

Zn   –   Zinc 
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