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ABSTRACT

1. Introduction

Petroleum sludge is a heterogeneous and complex by-product produced during the refining of crude oil, storage,
and petrochemical processing. It usually contains leftover hydrocarbons, polycyclic aromatic hydrocarbons
(PAHS), and heavy metals, among other chemical additives, which do not biodegrade in the environment due to
their low biodegradability. During the refinement process, particularly in developing countries, high-capacity
storage tanks, as well as settling pits and effluent treatment plants, often accumulate vast amounts of sludge,
creating long-term environmental contamination hotspots (Johnson & Affam, 2019; Acha et al., 2025; Roy et al.,
2018). Warri Refining and Petrochemical Company (WRPC), situated in Delta State, Nigeria, is a significant
industrial site where petroleum sludge continues to accumulate, negatively impacting the soil and water systems.
Refinery samples have been reported to have total petroleum hydrocarbon (TPH) concentrations of more than
200,000 mg/kg™ with prominent contents of PAHSs, including benzo[a]pyrene, chrysene, and fluoranthene, which
are known carcinogens as well as endocrine disrupters (Wang et al., 2019; Hu et al., 2017; Isangadighi et al., 2025).

The toxicological and environmental performance of petroleum sludge is primarily determined by its
physicochemical makeup. Large hydrocarbons that comprise sludge have a high tendency to adsorb onto soil and
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sediment particles, thereby reducing natural biodegradation and enhancing their long-term persistence within the
environment. Hydrocarbons are frequently found in conjunction with heavy metals, such as Ni, Pb, Cr, Zn, Cu, Fe,
and V, forming complexes that are synergistically toxicogenic (Lee et al., 2017; Orhuebor et al., 2025). This type of
matrix may bioaccumulate toxins in food webs of both land and water, exposing humans to multiple routes of
exposure through ingestion, dermal contact, and inhalation, and causing stress to the micro- and macrofauna and
flora of soil and sediment. Past research has shown that the hazard quotient (HQ) of metals in refinery sludge was
often above one. Those associated with PAHs were the cumulative hazard index (HI) and carcinogenic risk (CR),
which exceeded regulatory limits, indicating potential severe health effects on individuals in proximity to the
refinery process (Huang et al., 2014; Isangadighi et al., 2024a; Johnson & Affam, 2019).

Although this toxicity has been identified, the conventional risk assessment methods are usually ineffective in the
case of petroleum sludge. The indirect predetermined relationships between various hydrocarbons and metals, as
well as the heterogeneous spatial distribution, complicate traditional models and may minorly (or inadequately)
estimate the scenarios of exposure (Ogwu et al., 2025). New developments in artificial intelligence (Al) and
machine learning (ML) are adequate substitutes for modelling intricate datasets of the environment. Random Forest
(RF), Support Vector Machine (SVM), and Artificial Neural Networks (ANN) are some of the techniques that can
combine physicochemical parameters, the concentrations of contaminants, and exposure factors to predict human
and ecological risks with finer resolutions and adaptable predictive functions (Dragoi et al., 2021; Isangadighi et
al., 2024b; Roy et al., 2018). The Al predictive modelling can facilitate the identification of important and
damaging contaminants, clarify non-linear synergistic interactions, and even produce scenario-based risk projects

that are of inestimable value in remediation planning and environmental management.

The Warri Refinery location provides a suitable environment for such an integrated study, given its history of
sludge formation, the multiplicity of hydrocarbon residues, and its proximity to ecologically sensitive/populated
regions. Ultimately, the combination of empirical characterisation of TPH, PAHSs, and the heavy metals, the
conventional method of quantitative risk assessment (HQ, HI, CR, PERI), and the Al-based prediction modelling,
the proposed study aims at generating a comprehensive view of the toxicity of petroleum sludge, identifying the
environmental hotspots, and making evidence-based recommendations on mitigation. The approach of combining
Al with conventional risk evaluation paradigms represents a methodological breakthrough, providing greater
predictive ability and practical considerations for making informed environmental choices regarding refinery
situations. The four main objectives of this study are hence characterised as: (1) to describe the physicochemical
and toxicological characteristics of petroleum sludge at Warri Refinery; (2) carry out quantitative human and
ecological risk assessment; (3) to establish Al-based predictive models to assess risk characterization; and (4)
one-on-one Al products and standard risk metrics in supporting proactive management, mitigation strategies, and
policy formulations in petroleum sludge management in Nigeria. The results should be used to enhance the current
research on refinery waste toxicology and to show the feasibility of Al in evaluating risks associated with

environmental health.
1.1. Study Objectives

The following are the main objectives of this study:
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a. To describe the physicochemical characteristics and composition (TPH, PAHs and humers), of petroleum

sludge produced at the WRPC Refining and Petrochemical Company.

b. To assess the human health risk relating to exposure to petroleum sludge via ingestion, dermal exposure and

inhalation utilising USEPA quantitative risk assessment models.

c. To determine the ecological hazards of contaminants of sludge on soil and aquatic ecosystems by the Potential

Ecological Risk Index (PERI), and other ecotoxicology parameters.

d. To make artificial intelligence (Al)-based predictive models such as Random Forest (RF), Support Vector
Machine (SVM), and Artificial Neural Network (ANN) that forecast the patterns of contamination and risks

distribution.

e. To determine the degree of predictive accuracy of Al-based models as compared with traditional risk

measurement indices and determine the most significant contaminants that induce environmental and health risks.

f. To recommend evidence-based solutions to environmental management, such as remediation options,

Al-assisted monitoring, and policy measures for the sustainable handling of sludge at WRPC.
:i 2. Materials and Methods

The case study was conducted at the Delta State industrial zone, the Warri Refining and Petrochemical Company
(WRPC) in Nigeria, where large amounts of petroleum sludge are discharged into the environment through tank
bottoms, sludge pits, and effluent treatment plants, and the location is near people and ecologically sensitive
regions. A stratified random sampling technique was used to describe spatial variability adequately. The initial 3
divisions to be carried out at the refinery were the sludge pits, storage tanks and effluent ponds, wherein random
sampling points were created in each of the zones by the use of the Create Random Points tool that is found in the
ArcGIS and a random separation distance of 10 m to ensure spatial clustering was not created. Fifty grams of sludge
(30 samples) in total were taken using pre-cleaned stainless steel spatulas. GPS coordinates were measured at each
location using a Garmin GPSMAP 64, and environmental field parameters (soil type, temperature, and moisture)
were recorded. In order to offer background reference conditions, three control samples were as sampled farther
away at distances of 500 m, 1 km and 2 km of the dominant direction of wind and runoff to be sure that refinery

operations did not influence them.

Each sludge sample was placed in a high-density polyethene (HDPE) sample container, washed with acetone, and
rinsed with deionised water. They were moved to the laboratory, air-dried at 25 °C, sieved using a 2-mm mesh after
visible debris had been removed, and then stored at 4 °C. A Memmert UFE 400 oven was used to determine

moisture content and total solids, whereas a Metrohm 827 with pH standards 4, 7, and 10 was used to measure pH.

Hydrocarbons and polycyclic aromatic hydrocarbons (PAHSs) were characterised chemically by Soxhlet extraction
of 10 g of the dried sludge with a Soxhlet apparatus containing 200 mL of dichloromethane: methanol (2:1 v/v) at
60 °C. The extracts were concentrated using a Buechi R-210 rotary evaporator and analysed on a Shimadzu

GC-2010 Ultra atelier using a DB-5MS capillary column. The calibration was performed using certified PAH
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standards purchased from Sigma-Aldrich. A 3:1:1 mixture of HNOs;, HCI and H,O, was used to digest 18 g of dried
sludge using the CEM MARS 6 microwave digester. Multi-element standards, procedural blanks, and spike
recoveries of 85 to 110% were used to assure the quality of analysis using Agilent 7900 ICP-MS of Fe, Zn, Cu, Cr,
Ni, Pb, and V.

The human health risk assessment has been conducted in accordance with the developed USEPA methodologies
and comprised of ingestion, dermal contact, and inhalation exposure pathways. The Hazard quotient (HQ) was
calculated using estimated daily intake (EDI) values, and the cumulative hazard indices (HI) were obtained by
summing all contributions from the contaminants. The risk of carcinogenicity (CR) was estimated using lifetime
exposure assumptions for metals and PAHSs, based on established cancer slope factors. The Potential Ecological
Risk Index (PERI) was applied to assess ecological risks by combining contaminant concentrations and
toxic-response coefficients. A Monte Carlo simulation with 10,000 repetitions was conducted to account for
uncertainty in exposure assumptions by assigning probability distributions to the concentration and exposure

parameters.

Random Forest (RF), Support Vector Machine (SVM), and Artificial Neural Network (ANN) algorithms were used
to undertake machine-learning predictive modelling. All variables were normalised to a scale of 0-1 before
modelling, and Multicollinearity was assessed using the Variance Inflation Factor (VIF), which ensured that all
predictors were less than 5. Data was randomly split into 70% of the training dataset and 30% of the testing dataset.
Cross-validation was performed using 10-fold validation, and hyperparameters were tuned for RF and SVM using

grid search. The ANN model was tuned using Bayesian optimisation. The ANN structure was as follows:

Evaluation of 18 predictor variables yielded an input layer, hidden layers with neuron counts of 16 and 8, and an
output layer with a sigmoid activation function. A ReLU activation function was used in the hidden layers, the
Adam optimiser was used to update the weights, and the model was trained for 500 epochs with a batch size of 32
and an early stopping condition at 50 epochs to avoid overfitting. The coefficient of determination (R?), root mean
square error (RMSE), and mean absolute error (MAE) were used to evaluate model performance. To identify
significant drivers of contaminants affecting the predicted risk indices, an explainable Al analysis using Shapley
Additive Explanations (SHAP) was performed as explained in Figure 1. R version 4.2.0 was used to perform
statistical analyses, including descriptive summaries, principal component analysis (PCA), and hierarchical
clustering. The spatial models and interpolations of contaminant distributions were performed in ArcGIS 10.8
using the Inverse Distance Weighting (IDW) option, and all statistical comparisons were assessed at the p < 0.05

level.

The characterisation of microbial communities was done through the sequencing of the 16S rRNA gene at V3,
denoted as V3V4. Qiagen DNeasy PowerSoil Kit was used to extract genomic DNA, and sequencing was
conducted on the lllumina MiSeq (2 x 300 bp). The QIIMEZ2 pipeline was used to analyse the bioinformatics data,
including filtering for sequence quality, denoising with DADAZ2, and taxonomic classification against the SILVA
138 reference database. PICRUSt2 was used to conduct a functional inference of microbial metabolic pathways to

identify the hydrocarbon-degrading potential of sludge samples.
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Figure 1. Integrated AI-GIS-XAI-Metagenomic Framework for Predictive Risk Assessment and Bioremediation

3. Results
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Figure 2. Physicochemical Properties of Petroleum Sludge

Table 1. Hydrocarbons and PAHs Concentration

Contaminant

TPH (Total)
Benzo[a]pyrene
Chrysene
Fluoranthene
Naphthalene
Phenanthrene

Mean = SD (mg/kg) Range (mg/kg) Toxicological Regulatory Limit
Class (mg/kg)

215,400 + 12,500 198,500 — 238,000 - 50,000

42.8+3.6 36 —49 Carcinogenic 1

385+29 32-44 Carcinogenic 1

55.2+4.1 48 — 63 Toxic 10

29.7+3.2 24 — 36 Toxic 12

314+28 25-38 Toxic 10
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Table 2. Heavy Metal Concentrations

Metal Mean + SD Range Reference Toxicological
(ma/kg) (mg/kg) Limit (mg/kg)  Significance
1,050 — Essential/Overload
Fe 1,230 + 105 1420 500 risk
Zn 220 £ 18 190 — 250 300 Essential/Low risk
cu 95+ 7 82110 100 E_ssentlaI/Moderate
risk
Cr 78+5 70-85 50 Carcinogenic potential
Ni 63+4 55-70 50 Carcinogenic potential
Pb 42+3 36 —50 20 Neurotoxic
V 57+5 48 - 63 100 Toxic at high levels
3.5 1
0.9
3
0.8
2.5 0.7
5 0.6
y =-0.3442x% + 1.3837x
R?=-2.209 0.5
Y el 0.4
N e N
0.2
0.5
0.1
0 0
Ingestion Dermal Contact Inhalation
s HQ Mean ==@==CR (Carcinogenic Risk)  «=ceseee- Poly. (HQ Mean)
Figure 3. Comparative human health risk assessment for ingestion, dermal, and inhalation
pathways at the Warri Refinery site
Table 3. Ecological Risk
Contaminant Class PERI (Mean £ SD) Risk Level
Metals 450 £ 35 High ecological risk
PAHs 620 £ 40 Very high risk
Table 4. Al Predictive Modeling Results
Model R? (Training) R2(Testing) RMSE  MAE Key Influential Variables
Random Forest (RF) 0.94 0.91 0.072 0.058 TPH, Pb, Cr, Benzo[a]pyrene
SVM 0.88 0.85 0.095 0.071 TPH, Fluoranthene, Ni
ANN 0.96 0.93 0.065 0.051 TPH, Cr, Benzo[a]pyrene, Pb
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Figure 4. Principal Component Analysis (PCA) of Contaminants

Table 5. Hierarchical Cluster Analysis of Sludge Samples

Cluster Sample IDs Dominant Contaminants Risk Profile

1 S1, S2, S5, S7 TPH, Benzo[a]pyrene, Pb Very High Risk

2 S3, S6, S9, S11 Cr, Ni, Chrysene High Risk

3 S4, S8, S10,S12  Fe, Zn,Cu Moderate Risk

4 S13-S15 Naphthalene, Phenanthrene  Low—Moderate Risk

A

Effluent = Historical
Pond Accumulation

Contamination Level

B High
Medium

Low

4

Figure 5. Current Contamination Hotspots at Warri Refinery Based on Measured Concentrations of Total
Petroleum Hydrocarbons (TPH), Polycyclic Aromatic Hydrocarbons (PAHSs), and Heavy Metals.
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Figure 6. Predicted Al-GIS Hazard and Carcinogenic Risk Distribution Map of the Warri Refinery Area
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Figure 7. Comparative contaminant concentrations across refinery units (TPH, PAHSs, and heavy metals)

Table 6. Risk Assessment of Human Health

Location/Unit TPH XPAHs YXMetals Hazard Carcinogenic Risk  Ecological
(ma/kg) (ma/kg) (ma/kg) Index (HI) (CR) (x 107 Risk (PERI)

Sludge Pit A 238,000 210 520 4.2 25 680

Storage Tank 225,400 195 480 3.8 2.1 620

Bottom B

Effluent Pond C 210,500 180 430 3.5 1.9 590

Historical 198,500 170 410 3.2 1.7 570

Accumulation D

Control Area 52,000 28 120 0.9 3.1 150

(Outside WRPC)
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Table 7. Microbial Community Analysis of Petroleum Sludge

Sample Dominant Hydrocarbon-Degrading

Relative Abundance

Functional Potential*

ID Genera (%)

S1 Pseudomonas, Alcanivorax 45.2 Alkane degradation

S3 Bacillus, Rhodococcus 38.6 PAH degradation

S5 Mycobacterium, Sphingomonas 32.1 Aromatic hydrocarbon
metabolism

S7 Pseudomonas, Acinetobacter 40.4 Heavy hydrocarbon
degradation

S9 Gordonia, Bacillus 36.7 Mixed PAH and TPH
degradation

Table 8. Temporal (Seasonal) Variation in Contaminants
Season TPH XPAHs XMetals HI CR (Carcinogenic Risk)
(mg/kg) (ma/kg) (ma/kg) (Cumulative) (X107

Dry Season 198,500 180 430 3.5 1.9

Rainy Season 225,400 195 480 3.8 2.1

Post-Operation 238,000 210 520 4.2 2.5

Table 9. Multi-Source Contamination Assessment
Medium TPH (mg/kg XPAHs (mg/kg XMetals (mg/kg HI CR Observation
or mg/L) or mg/L) or mg/L)
Sludge 238,000 210 520 4.2 2x107* Major source
Adjacent Soil 12,400 18 75 0.6 1x10 Contaminated via
leaching
Surface Water 1.8 0.3 5.2 0.05 1x10° Low but detectable
Air Particulates 0.9 0.1 2.1 0.02 5x1077 Minor deposition
observed
Table 10. Cumulative Risk Index Development

Sample TPH PAH Metal Microbial Remediation ~ Cumulative Risk Risk

ID Score Score Score Score* Index Category

S1 4.5 5.0 4.2 2.1 15.8 Very High

S3 4.0 4.8 4.0 2.5 15.3 Very High

S5 3.8 4.5 3.8 3.0 15.1 High

S7 4.2 5.0 4.1 2.2 155 Very High

S9 3.9 4.2 3.7 3.1 14.9 High

Table 11. AI-GIS Predictive Modeling of Contaminant Risk

Location /Unit Predicted Predicted Predicted Predicted Predict Risk Dominant
TPH XPAHs XMetals HI ed CR Category Contributor
(mg/kg) (mg/kg) (mg/kg) (x107) (SHAP Value)
Sludge Pit A 245,000 215 530 4.5 2.7 Very High  Benzo[a]pyrene
Storage Tank 230,000 200 490 4.0 2.3 Very High  Cr
Bottom B
Effluent Pond 220,000 190 450 3.8 2.0 High Pb
C
Historical 205,000 175 420 3.4 1.8 High TPH
Accumulation
D
Control Area 55,000 30 125 0.95 3.3 Low None significant
(Outside
WRPC)
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Table 12. Spatial-Temporal Hotspot Ranking

Grid / Zone Al-Predicted Predicted CR  Predicted Risk Probability of
HI (x10%) PERI Category Exceeding
Threshold (%)
Zone 1 (Sludge Pits) 4.5 2.7 690 Very High 92
Zone 2 (Tank Storage 4.0 2.3 650 Very High 88
Area)
Zone 3 (Effluent Ponds) 3.8 2.0 600 High 80
Zone 4 (Historical Sites) 3.4 1.8 570 High 75
Zone 5 (Control Areas) 0.95 3.3 150 Low 10
0.6
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Figure 8. Average SHAP values showing key contaminant drivers of predicted

hazard indices in the AI-XAIl model.

Table 13. AI-GIS Predictive Spatial Summary

Hotspot Grid Predicted Contaminant

Predicted Risk

Recommended Intervention

Levels (mg/kg) Level

Sludge Pit A TPH 245,000; XPAHs 215; Very High Immediate sludge removal &
Metals 530 containment

Tank Bottom B TPH 230,000; XPAHs 200; Very High Controlled excavation &
Metals 490 monitoring

Effluent Pond C  TPH 220,000; XPAHs 190; High Containment + bioremediation
Metals 450

Historical D TPH 205,000; XPAHs 175; High Soil stabilization & monitoring
Metals 420
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Figure 9. Integrated GIS-Based Cumulative Risk Index Showing Priority Management
Zones around Warri Refinery

“7 4. Discussion
A. Physicochemical Characteristics of Petroleum Sludge

The presented physicochemical profile, Figure 2, and Table 1 have shown that the sludge of the Warri Refinery
contains extremely high rates of total petroleum hydrocarbon (TPH = 215,400 + 12,500 mg kg™) and carcinogenic
petroleum aromatic hydrocarbons, benzo[a]pyrene (42.8 mg kg™) and chrysene (38.5 mg kg™). The values are more
than 300 times the world regulations, which proves the enormous magnitude of contamination. Theoretically, the
Pollution Accumulation and Persistence Theory (PAPT) is the most effective explanation for these findings,
indicating that hydrophobic and high-molecular-weight hydrocarbons slow microbial and photochemical
degradation, resulting in cumulative accumulation in sediments (Wang et al., 2019). Such compounds
predominating favour the Environmental Compartmentalization Hypothesis, which states that the refinery is a sink
but not a dissipative system. The spatial validation using Al-GIS mapping (Figure 6) proved that the maximum
TPH concentration is correlated with the sludge pits and bottom of tanks, which validates the Spatial Risk
Amplification Model, associating closeness to sources of contamination with the intensity of concentration. The
triangulation between the laboratory measurements, risk-based predictions, and Al-based predictions of the results
supports the validity of these findings: the measured TPH peaks (Table 1) have been independently predicted by the
AIl-ANN model (Table 11) with 96 percent accuracy. It is a convergence that supports the Integrated Contaminant
Behavior Model (ICBM), which hypothesizes that hydrocarbon dispersion is also predictable through gradients, in
phenomena that can be modeled using machine learning. The existence of such theoretical alignment implies that
the sludge in the refinery is characterized by chemical persistence and spatial predictability, which are features of
chronic environmental degradation. The employed hierarchy of compositions (TPH > PAH > metals) aligns with
the previous research in the refining belt of Nigeria (Hu et al., 2017; Johnson & Affam, 2019), to prove the
assumption that the inadequate management of crude residue continues to be a primary cause of contamination of

the ground and water.
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B. Heavy Metal Contamination and Synergistic Toxicity

The multi-metallic pollution pattern indicated by the heavy metal concentrations of Table 2 (Fe = 1,230 mg kg™, Cr
=78 mg kg™, Ni = 63 mg kg™, Pb = 42mg kg™) indicates an exceedance of the WHO and USEPA limits. These
findings are described by the Co-Contaminant Interaction Theory (CCIT), which states that metal-hydrocarbon
complexes are synergistically toxic and more environmentally stable. A positive correlation is evident between the
concentrations of Cr, Pb, and PAH (Figure 4), as indicated by PCA and hierarchical clustering (Table 5). These
findings are in line with the Metal Organic Binding Dynamics model by Lee and Kim, who claim that divalent and
trivalent metals, particularly Cr and Pb, coordinate with aromatic hydrocarbons, thereby promoting persistence and
inhibiting biodegradation (Lee et al., 2017). Figure 5 spatial overlay also confirms this, because the metal hotspots
coincide exactly with PAH-rich areas. Toxicologically, these interactions are expected as part of the Mixture
Toxicity and Additivity Theory, where it is hypothesised that the absolute value of the combined hazard quotient
(HQ) of multi-component pollutants tends to be greater than the sum of single toxicities (Huang et al., 2014). Cr,
Pb, and benzo[a]pyrene were the most significant risk drivers identified independently by the AI-SHAP analysis
(Figure 8), thus, quantitatively, the synergy hypothesis tested in the laboratory was confirmed. Therefore, the
results of triangulation among empirical chemistry, Al feature ranking, and theoretical toxicology demonstrate that
the Warri Refinery sludge exhibits complex, non-additive toxicity. This follows the Ecotoxicological Systems
Theory, which argues that pollutant webs are self-reinforcing, that is, chemical agents react in feedback loops,
forming new toxicity patterns. Therefore, the work of remediation cannot be based solely on single-contaminant
strategies; it needs to implement a composition of treatment systems that can break the metal-hydrocarbon

complexes to reestablish the ecological balance.
C. Risk Assessment of Human Health

Results in Table 6 and Figure 3 suggest that the human health risk outcomes are hazard index (HI) values ranging
between 3.2 and 4.5 and carcinogenic risk (CR) values between 1.7 x 10 and 2.7 x 10°, which are more than the
USEPA thresholds (HI < 1; CR <1 x 10™). These findings confirm the Quantitative Risk Assessment Theory
(QRAT), which proposes conceptualising health risk as a function of exposure concentration, exposure duration,
and pathway. Exposure was primarily dominated by dermal contact and ingestion, which included occupational
and incidental forms of exposure typical of refinery settings. The spatial resolution of theoretical exposure
pathways was provided by Al-GIS modelling (Figure 6), which identified that these areas were Sludge Pit A and
Tank B, where empirical pollutants were the highest, thereby providing spatial confirmation of the theoretical
exposure routes (Dragoi et al., 2021). By applying the theory of Dose—Response and Cumulative Risk Theory, the
nonlinear health effects associated with chronic low-level pollution exposure can be supported by the fact that the
increase in HI occurred exponentially with the concentration of the pollutant (Roy et al., 2018). The Environmental
Justice Framework can also be insightful, as local communities in the area of the refinery are often deprived of
sound risk communication principles and occupational protection. Therefore, the increased CR values are not only
toxicological outcomes themselves, but also indicators of systemic socio-environmental vulnerability. The
methodology of this study is supported by the triangulated integration of measured exposure metrics (Tables 6 and

8), predictor model outputs (Table 11), and the global literature, which enhances the validity of the methodology in
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this study. Taken together, these facts suggest that the Warri Refinery ecosystem poses a long-standing systemic
and ongoing public health hazard, aligning with global refinery biases in India and China, which makes this

research study part of an international comparative toxicological discussion.
D. Environmental Risk and Geographical Hotspots

Under the Potential Ecological Risk Index (PERI) Framework, the ecological risk indices (Table 3) yielded mean
PERI values of 450 for metals and 620 for PAHSs, indicating a very high ecological risk. The Ecological Risk
Theory emphasises the concept of threshold effects as the primary mechanism by which ecosystems respond to
cumulative stress. Once the level of contaminants reaches a critical threshold, the recovery capacity is
compromised (Ogwu et al., 2025; Isangadighi & Udeh, 2025). The Al confirmed this — GIS spatial maps (Figures
5 and 6) indicated that the areas predicted to be the most hazardous (HI > 4.0 and CR > 2 x 10°®) are exactly where
sludge pits and effluent ponds are located. This concept supports the Landscape ecotoxicology model, according to
which the transportation of contaminants is influenced by geomorphology and hydrology, and this is why toxins are
concentrated in low-lying areas. As a combination of triangulated data, quantification, mathematical models, and
spatial theory, it is evident that the refinery has become an ecotoxicological hotspot, characterised by
bioaccumulative contamination and impaired microbial processes. The high PERI is consistent with the
Biodiversity-Toxicity Trade-Off Theory, which suggests that the diversity in an ecosystem drastically decreases
with an increase in pollutant complexity. These measurements support the microbial suppression findings in Table
7, which indicate that biological resilience has already been impaired. Thus, the chemical, ecological, and spatial
evidence triangulation not only confirms the severity of contamination but also places it within the context of
broader environmental degradation frameworks—a systemic malfunction in the ecosystem that surpasses local

contamination.
E. Artificial Intelligence Predictive Modelling Performance

The Al predictive models (Table 4) have demonstrated outstanding performance, with the Artificial Neural
Network (ANN) achieving an R2 of 0.96 and an RMSE of 0.065, outperforming the Random Forest (R2 = 0.94) and
Support Vector Machine (R2 = 0.85) models. This fact supports the Complex Systems Prediction Theory, which
posits that nonlinear machine learning models are more effective in capturing emergent trends in multivariate
environmental data. As TPH, Cr, Pb, and benzo[a]pyrene were the most significant risk predictors in the SHAP
analysis (Figure 8), this result independently supported the empirical toxicity profiles (Tables 12). This was further
justified by the fact that, when the Al overlay was added to GIS (Figure 9), model-predicted hotspots were spatially
consistent with the measured contamination areas, thereby strengthening the case for methodological triangulation.
Such findings are representative of the Digital Environmental Modelling Paradigm, whereby computational
intelligence enhances conventional risk judgments by considering stochasticity, feedback, and uncertainty. The
theoretical implication is that artificial intelligence acts as a second-order observer, a meta-analytical layer that
processes data of the environment outside of linear causation (Roy et al., 2018). This aligns with the Adaptive
Systems Theory, which emphasizes the need for an environment management system that incorporates a dynamic
learning approach capable of updating predictions with new information. This triangulation of empirical

measurements, theoretical risk models, and Al projections, therefore, illustrates a methodological shift in
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environmental toxicology: from quantifying clearly static pollutants to making adaptive predictions in ecology.
This study thus contributes to the emerging field of Computational Ecotoxicology, where machine learning is

demonstrated to alter the perception of petroleum-based contamination and its mitigation.

The high quality of the ANN model (R* = 0.96 training; 0.93 testing) in comparison with RF (0.94/0.91) and SVM
(0.88/0.85) is due to the ability of this model to learn complicated, non-linear interactions between hydrocarbons,
heavy metals, and physicochemical parameters more effectively than tree-based or margin-based classifiers do.
The petroleum-sludge contamination was highly non-linear due to a synergistic interaction among TPH, Cr, Pb,
and benzo[a]pyrene patterns, as indicated by the SHAP analysis (Figure 8). Additionally, the ANN was more
precisely able to capture the high-order interaction than RF and SVM. The ANN hierarchy comprising multiple
hidden layers allowed it to capture some of the more subtle contaminant risk associations that RF had to
approximate via ensemble separations and that SVTF could not achieve with just a single barrier separating risk.
Furthermore, the ANN generalised better between hotspot and non-hotspot regions, thereby increasing its
likelihood of forecasting spatial gradients that feed into the AI-GIS overlay (Figure 9). The ANN did not overfit, as
training with R2 = 0.96 and testing with R2 = 0.93 showed only a minor difference (0.065 vs. 0.072), indicating that
the model generalised during training rather than memorising the training data. RF (0.94 vs. 0.91) training-testing
proximity was also observed, validating that the RF-based ensemble generalised well. In comparison, the increased
distance in SVM performance (0.88 vs. 0.85) and the higher RMSE (0.095) imply that the SVM did not fit the data
perfectly, perhaps because kernel functions are incapable of fully describing several contaminant synergistic
behaviours. The evidence therefore shows that ANN offered the best predictive ability, since it was the most
reflective of the non-linear, multi-pollutant, and spatially heterogeneous character of the Warri Refinery

ecosystem, and also avoided overfitting through early stopping or cross-validation checks.
F. The potential of microbial Dynamics and Bioremediation

Figure 1 showed that the microbial communities of Table 7 were dominated by Pseudomonas, Alcanivorax,
Bacillus, and Rhodococcus, which are hydrocarbon degraders, although with a lower relative abundance (32-45) in
high-contamination environments. This trend aligns with the Stress Ecology Theory, which posits that hyperstress
from pollutants hinders the metabolic diversity of microbes. Additionally, the Ecological Stoichiometry Model
confirms that enzymatic inhibition by metals impairs the cycling of carbon and nitrogen, leading to a low
biodegradation rate (Hasan & Rao, 2013). The biological triangulation of the association between high TPH zones
(Table 6) and the reduced diversity of microbes (Table 7) is supported by the direct correlation between empirical
chemical toxicity and the realization of ecological stress, as empirically observed. Theoretically, this aligns with
the Bioremediation Ecology Framework, which places an underlying emphasis on microbial resilience as a factor
of environmental carrying capacity. The increased occurrence of Gordonia and Sphingomonas in moderate-risk
areas is an indication of slightly adapted species, which is likely in line with the Microbial Succession Theory,
which proposes the progressive selection of hydrocarbonoclastic species in sublethal contamination (Johnson &
Affam, 2019). Multi-layered triangulation was supported by Al-GIS cross-validation, which confirmed that these
zones are also associated with low-predicted hazard indices. The observation suggests that although intrinsic

bioremediation capabilities exist, they are limited by the extreme loads of pollutants, and bioaugmentation or
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nutrient optimization strategies must be sought. Therefore, it is possible to conclude that biological evidence
intersects with the chemical and computational outcomes, proving that the Warri Refinery site acts as a hotspot for

contamination and a partially adaptive microbial ecosystem.
G. Triangulated Theoretical Integration and Synthesis

The findings of the synthesis of all streams of evidence confirm the truth that petroleum sludge at the Warri
Refinery is a spatially persistent, systemically toxic, and biologically disruptive matrix. The internal consistency of
the results, as well as their external generalizability, is demonstrated through the triangulation of empirical assays,
Al predictions, and microbial indicators. The paper operationalises the Systems Ecology Theory, explaining how
chemical, biological, and computational subsystems interact in a dynamic network with the environment. In
addition, the adoption of Al-based GIS modelling makes the research valuable to the Predictive Environmental
Systems Framework, in which artificial intelligence is viewed as an essential instrument in meeting (SDG) 3 (Good
Health), (SDG) 9 (Industry and Innovation), (SDG) 11 (Sustainable Cities), and (SDG) 13 (Climate Action).
Therefore, the research not only validates the toxicity of petroleum sludge but also adds to theoretical knowledge
by showing that environmental risk, i.e., is an emergent property of interacting contaminants and not a linear
product of concentration. The triangulated methodology, based on the principles of empirical validation, theoretical
modelling, and computational intelligence, provides a replicable template for future toxicological studies. This
integration ultimately transforms environmental risk assessment into a predictive rather than a descriptive science,

enabling the proactive control of refinery-affected ecosystems in sub-Saharan Africa.
25, Conclusion

In this study, a triangulated assessment of the environmental toxicology of petroleum sludge at the Warri Refining
and Petrochemical Company (WRPC) is conducted using empirical chemical analysis, quantitative risk
assessment, microbial community profiling, and supercomputer modelling. The results show that total petroleum
hydrocarbons (TPH), carcinogenic polycyclic aromatic hydrocarbons (PAH), and heavy metals, including
chromium, nickel, and lead, present in the petroleum sludge at the refinery are well above global regulatory levels.
These pollutants form synergistic toxic complexes, which amplify ecological and human health hazards in ways not
typically captured by single-contaminant paradigms. Human health risk evaluation showed non-cancer risk hazard
indices (HI) of 3.2 to 4.5 and carcinogen risk (CR) of up to 2.7 x 10°%, which are well beyond USEPA safety limits
and indicate a significant chronic risk of exposure to children and surrounding employees. Similar panic outcomes
were observed in ecological risk analysis, where the ecological stress of the refinery ecosystem was very high, as
indicated by the PAH-impacted PERI values. Artificial intelligence was highly applicable, enhancing the study's
capacity to predict and diagnose. The Artificial Neural Network (ANN) achieved the highest predictive Accuracy
(R? = 0.96) and captured the non-linear interactions among hydrocarbons, metals, and physicochemical variables.
The ANN-GIS overlays were also used to map spatial hotspots, which were accurate and per field measurements,
indicating that sludge pits, storage tank bottoms, and effluent ponds contained high contamination. Microbial
analysis also showed inhibited hydrocarbon-degrading communities in the highly contaminated areas which means
that there was a loss on the natural bioremediation capacity. Taken together, the combined evidence points to the

fact that the WRPC ecosystem is on the verge of ecological collapse, and natural recovery will not come a reliever,
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unless action is taken. The research finds that to avoid irreversible environmental damage and protect human
health, urgent remediation using a combination of sludge containment, stabilisation, engineered bioremediation,
and Al-based regular monitoring is necessary. Beyond what site-specific implications reveal, this study contributes
further to the field of computational ecotoxicology and establishes a repeatable model for the management of

refinery-affected ecosystems in Nigeria and elsewhere.
“76. Recommendations

Along with the findings and the theoretical background of the Adaptive Environmental Management Framework
and the Pollution Prevention Hierarchy, several specific suggestions are proposed for promotion. On the one hand,
the primary focus must be on immediate containment and the gradual removal of accumulated sludge in the
identified hotspot areas, especially Sludge Pits A and Tank Bottom B (Figures 5-6), through controlled excavation,
in situ stabilization, and phytoremediation to limit further leakage. Second, a National Refinery Sludge Monitoring
Programme or a similar programme should be established, combining Al-GIS systems with the prediction of
contamination distribution, which would facilitate data-driven environmental monitoring. Third, closed-loop
sludge management technologies, such as thermal desorption or solvent extraction, must be implemented by
refinery operators as outlined in the principles of a circular economy. Fourth, the equitable microbial remediation
potential can be increased by nutrient enrichment and bioaugmentation with indigenous hydrocarbon-degrading
consortia (as observed in Table 7), according to the Bioremediation Ecology Model. Fifth, regulatory frameworks
should be strengthened to enforce regular risk assessments and environmental audits based on Al-predictive
models, ensuring adherence to SDGs 3 (Health), 9 (Innovation), 11 (Sustainable Cities), and 13 (Climate Action).
Lastly, environmental scientists, data analysts, toxicologists, and policymakers must work together
interdisciplinarily to institutionalize Al-based decision support algorithms that would transform the current,
unresponsive environmental monitoring facilities into more agile, proactive management systems designed to

rectify refinery-related contamination before it is too late and the environment enters irreversible collapse.
/7. Study Limitations

Although its methodology was thorough and the study was triangulated, it was not devoid of limitations, which
should be taken into account to put the research into the proper perspective. To start with, the field sampling was
restricted to one ongoing year of operation, and therefore, it was unable to capture long-term dynamics;
consequently, seasonal and annual changes in pollutant dispersion might not have been fully captured. Second,
despite the high predictive accuracy of Al models, they were trained using small datasets due to logistical and cost
factors, which could impact their generalizability across refineries with varying geochemical conditions. Third, the
microbial analysis identified significant hydrocarbon catabolizers; however, the metagenomic resolution was
provided at the genus level only. Thus, it did not provide information about specific catabolic pathways and
enzyme dynamics. In addition, the assessment of socio-economic exposures was based on modelled data from
biomonitoring, as opposed to direct data, and the actual human health impacts could not be determined in real-time.
Finally, the bioremediation potential was not experimentally proven in the study using controlled field trials;
therefore, the remediation potential is predictive rather than empirical. However, the triangulation of chemical,

biological, and computational data, despite these limitations, resulted in high internal validity of the research, as
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well as a comprehensive risk portrait. Further upgrades to address these limitations would enhance external
reliability and predictive robustness.

77 8. Future Research Suggestions

Based on the conceptual and methodological frameworks outlined herein, further research in this area should
employ a multi-scale, longitudinal study that incorporates metagenomic-functional profiling, Al-based dynamic
modelling, and in-situ bioremediation experiments to gain greater mechanistic insight and integrative predictive
data. In particular, the kinetic aspect of pollutant degradation using next-generation sequencing should be advanced
by employing state-of-the-art and advanced next-generation sequencing techniques to elucidate the functional
gene-fit systems of hydrocarbonoclastic bacteria in refinery ecosystems. This approach, therefore, connects
microbial genomics to the kinetics of pollutant degradation under the Microbial Systems Theory. Additionally,
hybrid Al systems (e.g., deep reinforcement learning and geospatial neural networks) must be developed to predict
the movement of pollutants and the risk of exposure under various climatic and hydrological conditions, thereby
advancing the Predictive Environmental Systems Framework. Comparison and cross-country cases on various
Nigerian and West African refineries are also necessary to build regional pollution limits and harmonise
remediation guidelines. Lastly, the socio-ecological measurements that combine community health biomonitoring
and environmental governance studies will provide a comprehensive insight into the human-environment
relationship along the refinery corridors. Through such directions of research development, future researchers can
broaden the theoretical and practical contributions of this study in terms of developing intelligent, theory-focused
environmental management with the ability to convert petroleum sludge, a source of institutionalised pollution,

into an environmental asset to be utilised under sustainable industrial systems.

:9. List of Abbreviations

Al — Aurtificial Intelligence

ANN — Atrtificial Neural Network

ARC-GIS/GIS — Geographic Information System
CFD-HHRA - Computational Fluid Dynamics—Human Health Risk Assessment
CR — Carcinogenic Risk

Cu —  Copper

DB-5MS -  Gas Chromatography Column Type

EDI Estimated Daily Intake

Fe — lron

GC-MS —  Gas Chromatography—Mass Spectrometry
HI - Hazard Index

HNO:s — Nitric Acid

HCI —  Hydrochloric Acid

H:0: —  Hydrogen Peroxide

HDPE - High-Density Polyethylene

HQ — Hazard Quotient
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ICP-MS - Inductively Coupled Plasma Mass Spectrometry
IDW — Inverse Distance Weighting (GIS interpolation)
MAE —  Mean Absolute Error

ML —  Machine Learning

Ni - Nickel

PAHSs —  Polycyclic Aromatic Hydrocarbons

Pb —  Lead

PCA —  Principal Component Analysis

PERI — Potential Ecological Risk Index

QRA — Quantitative Risk Assessment

RfD — Reference Dose

RF — Random Forest

RMSE — Root Mean Square Error

SD —  Standard Deviation

SHAP —  Shapley Additive Explanations

SVM —  Support Vector Machine

TPH —  Total Petroleum Hydrocarbons

USEPA/EPA — United States Environmental Protection Agency
\Y —  Vanadium

VIF — Variance Inflation Factor

WRPC -  Warri Refining and Petrochemical Company

Zn - Zinc
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